Reduction of monsoon rainfall in response to past and future land-use and land-cover changes

Benjamin Quesada¹, Narayanappa Devaraju², Nathalie de Noblet-Ducoudré², Almut Arneth¹

¹Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen (Germany)

²Laboratoire des Sciences du Climat et de l’Environnement LSCE/IPSL, Unité mixte CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

Submitted to: Geophysical Research Letters

October 12th, 2016

Corresponding author: benjamin.quesada@kit.edu

Keywords: Attribution, monsoon rainfall, model intercomparison, land-cover change, biophysical effects, teleconnections
Abstract

Land-use and land cover changes (LULCC) can have significant biophysical impacts on regional precipitation, including monsoon rainfall. Using global simulations with and without LULCC from 5 general circulation models (GCM), under the Representative Concentration Pathway (RCP) 8.5 scenario, we find that future LULCC significantly reduce monsoon precipitation in at least 4 (out of 8) monsoon regions. While monsoon rainfalls are likely to intensify under future global warming, we estimate that biophysical effects of LULCC substantially weaken future projections of monsoons’ rainfall by 9% (Indian region), 12% (East Asian), 32% (South African) and 41% (North African), with an average of ~ 30% for projections across the global monsoon region. A similar strong contribution is found for biophysical effects of past LULCC to monsoon rainfall changes since the pre-industrial period. Rather than remote effects, local land-atmosphere interactions, implying a decrease in evapotranspiration, soil-moisture and clouds along with more anticyclonic conditions, could explain this future reduction in monsoon rainfall.

1. Introduction

Land-use and land-cover changes (LULCC) alter surface energy, momentum, heat, water and biogeochemical balances (e.g. CO₂ emissions). Several modeling experiments [Gupta et al., 2005; Abiodun et al., 2008; Takata et al., 2009; Devaraju et al., 2015b; Halder et al., 2015] and observational studies [Webb et al., 2005; Pielke et al., 2007; Lee et al., 2009; Kishtawal et al., 2010; Niyogi et al., 2010] analyzed the links between LULCC and monsoon perturbations, especially in Asia [Pielke et al., 2011]. For instance, with remote-sensing satellite observations, Niyogi et al. [2010] could partly attribute a significant decline in Indian summer monsoon rainfall in the past decades to an agricultural intensification in this region.
Takata et al. [2009] argued that local LULCC during a preindustrial period (1700-1850) was the major anthropogenic disturbance that weakened the Asian summer monsoon. In response to idealized deforestation scenarios, monsoon rainfall decreased in Africa and the northern parts of India but increased in southern India [Gupta et al., 2005]. Devaraju et al. [2015b] simulated a decline in northern hemisphere monsoon rainfall particularly in South Asia (-11% and -12% for annual and boreal summer precipitation, respectively), and an increase in southern hemisphere monsoon rainfall in response to a global-scale deforestation experiment. But when deforestation was restricted to tropical latitudes (20°S-20°N), they found only small effects on monsoon rainfall. In a regional analysis, Halder et al. [2015] found that observed LULCC over India during recent decades has contributed to a decline in Indian summer monsoon rainfall through changes in large-scale circulations and decrease in moisture convergence.

However, a common feature is shared by all these modelling studies: they are based on the use of only one global or regional climate model and/or they apply different idealized deforestation/afforestation scenarios (e.g. 100% or 50% of forests replaced by crops or grasslands and vice versa). Thus, review studies have called for climate model intercomparisons to validate the LULCC impacts on monsoon rainfall since results are overall inconclusive [Pielke et al., 2011; Mahmood et al., 2014; Lawrence and Vandecar, 2015; Xue and Dirmeyer, 2015]. To our knowledge, only Pitman et al. [2009] and Brovkin et al. [2013] have investigated past and future LULCC impacts in a multi-model framework, and they did not find statistically significant changes in global mean precipitation. Therefore, interactions between LULCC and monsoon are often not robustly simulated and a quantification of the hydrological cycle sensitivity to LULCC is still missing [Pielke et al., 2011; Xue and Dirmeyer, 2015].
Moreover, while scientists widely agree on robust local climate effects and remote biogeochemical effects through changes in atmospheric CO$_2$ concentration (see [Pielke et al., 2011; Mahmood et al., 2014; Lawrence and Vandecar, 2015] and references therein), remote biophysical effects (i.e. teleconnections through large-scale variations of the atmosphere’s water and energy budget) are still debated [Chase et al., 2000; Werth and Avissar, 2002; Avissar and Werth, 2005; Findell et al., 2006, 2009; Pitman et al., 2009; Snyder, 2010; Pielke et al., 2011; Mahmood et al., 2014]. For instance, whether or not significant effects on rainfall also arise outside the deforested areas has not yet been consistently shown [Pitman et al., 2009; Pielke et al., 2011; Brovkin et al., 2013; Mahmood et al., 2014; Lawrence and Vandecar, 2015]. Thus, local and/or remote effects of LULCC could contribute to modulate monsoon rainfall.

For the first time here, using several global coupled simulations and realistic global LULCC scenarios, we quantify the likely impacts of past and future LULCC on rainfall in all the world’s monsoon regions in which more than 70% of world’s population reside (section 3.1). Finally, we investigate the underlying physical mechanisms (remote vs. local land-atmosphere interactions) between LULCC and monsoon (section 3.2) which are still not consensual.

2. Methods

2.1. Monsoon regions

Eight (8) regions are defined as regional monsoon precipitation domains. Those are regions where i) the annual range of precipitation rates exceeds 2 mm/day (or 300 mm per season) and ii) the local summer precipitation exceeds 55 % of the total annual rainfall (see Figure 1 in [Yim et al., 2014]). Then the associated rectangular domains of regional monsoons with their names, initials and geographical definition - terminology and domains are from [Yim et
- are the following: Indian IN [10°N–30°N, 70°E–105°E], Western North Pacific WNP [12.5°N–22.5°N, 110°E–150°E], East Asia EA [22.5°N–45°N, 110°E–135°E], North America NAM [7.5°N–22.5°N, 110°W–80°W], Northern Africa NAF [5°N–15°N, 30°W–30°E], South America SAM [5°S–25°S, 70°W–40°W], Southern Africa SAF [7.5°S–25°S, 25°E–70°E] and Australia AUS [5°S–20°S, 110°E–150°E] (see 8 regions in Supplementary Material, Supplementary Fig. S1 and Supplementary Fig. S2). Similar domains have already been used in other studies [Wang and Ding, 2006, 2008; Kitoh et al., 2013]. Supplementary Fig. S2 shows the local projected annual range of precipitation rates, as defined in [Yim et al., 2014], only when local summer precipitation exceeds 55% of the total annual rainfall. We confirm that climate models simulate correctly the above-mentioned regions that encompass most monsoon rainfall. The “global monsoon region” [Trenberth et al., 2000; Wang and Ding, 2008] refers in our study to a virtual domain aggregating these 8 monsoonal domains. The robustness of our results to other different monsoon domains is tested in section 3.2.

2.2. Inter Tropical Convergence Zone (ITCZ) shifts

Shifts in the ITCZ are diagnosed using the “precipitation centroid” metric [Donohoe et al., 2014; Devaraju et al., 2015b] that allows to calculate the latitudinal location of the ITCZ precipitation maximum. The precipitation centroid is then defined as the median of the zonally-averaged precipitation between 20°S and 20°N. This zonal mean precipitation is interpolated to 0.01° resolution which allows the precipitation centroid to vary at increments smaller than the grid spacing of the model simulations (~2° longitude x 2° latitude) [Donohoe et al., 2014; McGee et al., 2014; Devaraju et al., 2015; Adam et al., 2016]. ITCZ shifts are thus defined as meridional shifts (in °N) of the precipitation centroid location.
2.3. Models and experiments

The Land-Use and Climate, Identification of Robust Impacts (LUCID) is a major international intercomparison exercise that intends to diagnose the robust biophysical impacts of LULCC using as many climate models as possible forced with same LULCC (http://www.lucidproject.org.au/).

2.3.1. LUCID-CMIP5 (Effects of future LULCC)

The LUCID-CMIP5 simulations analyzed here are the same as those described in [Brovkin et al., 2013] and [Boysen et al., 2014]. Focusing on the impacts of future changes of LULCC, several modeling groups from the 5th Phase of the Coupled Model Intercomparison Project (CMIP5) performed LUCID–CMIP5 simulations without anthropogenic land-use changes from 2006 to 2100. Here we use outputs from the 5 LUCID-CMIP5 and CMIP5 models (CanESM2, HadGEM2-ES, IPSL-CM5A-LR, MPI-ESM-LR and MIROC-ESM) on the last 30 years period of each experiment (2071-2100). RCP8.5 simulations are the CMIP5 runs with all forcings including the future anthropogenic land-use and land-cover change forcing based on RCP8.5 scenario. L2A85 simulations are the same runs as RCP8.5 but without the anthropogenic land-use and land-cover change forcing (after year 2005), with atmospheric CO₂ concentration prescribed from the RCP8.5 scenario. In other means, the difference between RCP8.5 and L2A85 simulations (i.e RCP8.5 – L2A85) corresponds to the pure biophysical effects of future anthropogenic land-use and land cover changes. Note that the RCP8.5 scenario includes spatially explicit future LULCC characterized by an expansion of croplands and pastures driven by the food demands of an increasing population and corresponds to a radiative forcing of more than 8.5 W.m⁻² in 2100 [Hurtt et al., 2011] (CO₂ concentration ~ 936 ppm in 2100). Future changes in tree cover between RCP8.5 and L2A85 simulations are about 4 millions of km² by 2100 (i.e ~1/10th of total idealized deforestation
scenarios [Ward et al., 2014]). Harmonization and implementation of future LULCC scenario into these 5 CMIP5 models are fully detailed in [Hurtt et al., 2011] and [Brovkin et al., 2013] papers (see their sections 2a and 2b).

For the analysis of the changes in surface energy components and land-atmosphere variables (CMIP5 standard abbreviation in parenthesis), we used the sensible and latent heat flux (hfss and hfls), incoming shortwave and longwave radiation at the surface (rsds and rlds), total cloud fraction (clt), moisture in the upper portion of the soil column (mrsos), geopotential height and vertical pressure velocity at 500 hPa (zg and wap) from RCP8.5 and L2A85 simulations on 2071-2100 period (Figure 3). Only wap variable for HADGEM2-ES model was not available.

2.3.2. LUCID (Effects of past LULCC)

To investigate the impacts of LULCC since the pre-industrial period, we also analyze LUCID simulations. Those have been used in previous studies: among others, [Pitman et al., 2009], [de Noblet-Ducoudré et al., 2012] and [Boisier et al., 2012]. In the standard present-day simulations (experiment PD) all greenhouse gases, land cover and sea surface temperatures (SSTs) are prescribed at their present-day values. The land cover is prescribed using a map reflecting 1992 conditions (with vegetation distribution of [Ramankutty and Foley, 1999] for crops and [Goldewijk, 2001] for pastures) as being representative for the simulation period 1972-2002. The simulations were run by 7 GCMs: ARPEGE, CCAM, CCSM, EC-EARTH, ECHAM5, IPSL, SPEEDY. Similar simulations as PD but with land cover map reflecting 1870 conditions were performed (experiment PDv). The difference between PD and PDv corresponds to the biophysical impacts of past LULCC. We also used the pre-industrial simulations carried out in LUCID project (experiment PI). In PI, all greenhouse gases, land cover and sea surface temperatures (SSTs) are prescribed at their pre-industrial values.
The land cover is prescribed using a map reflecting 1870 and the period 1870-1900 is simulated (same references than above for the vegetation distributions). The difference between PD and PI corresponds to the changes due to all forcings. Harmonization and implementation of past LULCC scenario into these 7 climate models are fully detailed in methodology sections of [Pitman et al., 2009] and [de Noblet-Ducoudré et al., 2012].

For each set of simulations (PI, PD, PDv), 5 independent realizations were run by each climate model and the average among these ensembles corresponds to the response of each model. For these sets, only land values were available, preventing ITCZ location calculation for this dataset.

To calculate the contribution of future LULCC to precipitation projections, we also use historical precipitation data (HIST) from the 5 LUCID-CMIP5 models for 1976-2005 period. Projected changes in precipitation found by a previous study analyzing 21 CMIP5 climate monsoon projections [Kitoh et al., 2013] are consistent with the 5 LUCID-CMIP5 models (ENS-FUT) projections (Pearson correlation coefficient r=0.9) with only a slight underestimation among the common monsoon regions (bias =0.14±0.25 mm/day, see Table S1).

Note that irrigation potential, landscape management practices, dust emissions from land-use and urbanization are not taken into account here in the implementation of the past and future LULCC scenarios.

Changes in “monsoon rainfall” depict here seasonal changes in precipitation: in DJF for southern hemisphere regions (SAM, SAF and AUS) and JJA for Northern hemisphere regions (IN, WNP, EA, NAM and NAF). ENS-FUT refers to the ensemble-mean from the 5 LUCID-CMIP5 models and ENS-PAST refers to the ensemble-mean from the 7 LUCID models.
2.4. Robustness and statistical significance

Two measures are implemented to analyze likely effects of LULCC and discuss statistical significance: (i) model agreement on direction of change and (ii) statistical significance of simulated changes. A first significance test is passed when at least 80% (70%) of the LUCID-CMIP5 (LUCID) model simulations and the multi-model mean ensemble ENS-FUT (ENS-PAST) display significant changes at 90th confidence level. For spatial precipitation averages, an additional significance test is performed to check whether at least 80% (70%) of the LUCID-CMIP5 (LUCID) model simulations show significant changes at 66th, 75th or 80th confidence level. For these significance tests, we use the Mann-Whitney-Wilcoxon test \cite{Hollander and Wolfe, 1999} with two sets of 30-years future simulations (e.g RCP8.5 and L2A85 simulations, on 2071-2100 period). This test is widely used in many regional climate studies \cite{Haensler et al., 2013; Jacob et al., 2014; Thober and Samaniego, 2014; Pfeifer et al., 2015}. Moreover, the Mann-Whitney-Wilcoxon test does not presume the distribution shapes of the samples which make this test particularly suited for precipitation data (right-skewed distributions) compared to, for example, a Student t-test.

3. Results

Here, we systematically investigate the effects of future LULCC on monsoon rainfall over 8 monsoonal regions under the RCP8.5 scenario, using global simulations of 5 GCMs from the intercomparison projects CMIP5 and LUCID-CMIP5 (see Methods). The 5 GCMs mostly agree on the tropical deforestation signal while model spread at higher latitudes is larger due to the different implementation of a common LULCC scenario among the models (dynamic vs. non dynamic vegetation models) \cite{Brovkin et al., 2013; Boysen et al., 2014}. In particular, in the 8 monsoonal regions, models simulate local deforestation, except in eastern Asia (see Supplementary Fig. S1). The largest areas of deforestation are estimated to occur in southern
America, southern Africa and northern Africa with ensemble-mean changes in tree cover being up to -25% by 2100.

3.1. LULCC-induced monsoon rainfall weakening

When considering only effects of LULCC at the end of the 21st century, we find that biophysical effects of future LULCC significantly reduce monsoon rainfall, as seen in the decline by about 1-2% in precipitation in 5 monsoon regions (Fig. 1; grey bars for Indian, South American, East Asian, Northern and South African regions with green tick marks and circles for significance). Ensemble-mean future changes (ENS-FUT) in seasonal precipitation vary from -0.14 mm/d (-2.6% in North America) to +0.06 mm/d (+0.7% in Western North Pacific). Spatially, most gridpoints across monsoonal regions show reduced precipitation patterns, except for Australia and Western North Pacific (Fig. 2). In the Indian region, patterns are heterogeneous with declines in monsoon rainfall up to -0.5 mm/day are found in the eastern part of India and Bangladesh as well as in the Arabian Sea and Bay of Bengal but some significant increases elsewhere. The eastern parts of South America, South Africa and East Asia (China) are also significantly depleted in precipitation during monsoon seasons (Fig. 2, black crosses for significance). Overall in the global monsoon region (average among all 8 monsoon regions), land-only changes are stronger than land+ocean changes, with a 1.9% reduction in monsoon rainfall but reaching up to -3% (South Africa, Western North Pacific and North Africa, see grey bars in Supplementary Fig. S3). Although these precipitation changes appear small, they are significant and meaningful because they can have profound impacts on monsoon regions’ economy [Gadgil and Gadgil, 2006], agricultural yields [Auffhammer et al., 2012] and water resources [Tiwari and Joshi, 2013]. Note also that a robust 1-2% increase in global mean precipitation is associated with a substantial global surface warming of ~1°K in response to greenhouse gas forcing [Held and Soden, 2006; Trenberth, 2011].
Furthermore, when LULCC effects on the monsoon change between present-day and future are considered versus the effects of all forcings (RCP8.5-L2A85 vs. RCP8.5-HIST, see Methods), the relative monsoon response becomes much more prominent (blue bars in Figure 1). Under the RCP8.5 scenario, monsoonal rainfall is projected to significantly increase in most regions (Table S1) as reported by previous studies [IPCC et al., 2013; Kitoh et al., 2013]. Therefore, biophysical effects of LULCC contribute to significantly weaken the projections of monsoon rainfall in at least 4 regions: by 9% in the Indian region, 12% in the East Asian region, 32% in the South African region, and 41% in the North African region (Fig. 1, blue bars). In South America, a strong negative contribution of biophysical effects of LULCC is found (~ -160%, Fig.1 blue bar) but not significant because South America is the only monsoon region where ENS-FUT monsoon rainfall projections is not significant (see Table S1, p>0.1). Likewise, when considering only land gridpoints in monsoonal regions, biophysical effects of LULCC significantly lessen future projections of monsoon rainfall by 39% in South Africa, 24% in Western North Pacific and 31% in North Africa, on average (red bars in Supplementary Fig. S3). On average, while global monsoon rainfall is simulated to increase at the end of the 21st century (see Table S1), biophysical effects contribute to decrease by ~30% these projected changes.

Interestingly, in our analysis, the two LUCID-CMIP5 models that are among the best CMIP5 models in simulating present-day monsoon precipitation [Lee and Wang, 2014] (CanESM2 and HadGEM2-ES) are also the models that project the highest decreases in global monsoon rainfall due to LULCC (respectively, -0.10 and -0.16 mm/d, i.e -1.4% and -2.4%). Moreover, here, they give larger LULCC contributions to monsoon rainfall projections (-65% and -70% respectively) than the ensemble-mean (-30%).

In addition, we find some evidence of shorter monsoon duration with significant changes in onset and retreat dates in some regions (see Table S2 and fixed threshold method [Wang and
In the Indian, Southern African, and Western North Pacific regions, most models simulate a decrease in the monsoon period duration (-4.2, -2.6 and -0.7 days on average, respectively).

We compare the changes in monsoon rainfall due to future LULCC with the ones due to past LULCC, using outputs from the 7 global climate models of the LUCID project (see Methods). This comparison suggests that future LULCC have larger impacts on monsoon rainfall reduction than past LULCC (1992 minus 1870 vegetation maps, Supplementary Fig. S4). In most monsoon regions, we calculate that past LULCC reduce monsoon rainfall in at least 6 regions (grey bars in Supplementary Fig. S5), but simulated changes are significant only in the Indian (-0.04 mm/d i.e -0.5% on average) and South American (-0.05 mm/d i.e -0.4%) regions. Spatially, precipitation reductions due to past LULCC are significant in monsoon sub-regions of Northern India, South America, East Asia and Northern Australia, up to -0.5 mm/d (Supplementary Fig. S6). In the Indian and South American regions, the relative contribution of past LULCC to past changes in precipitations is -47% and -33%, respectively (orange bars in Supplementary Fig. S5). Note that across the global monsoon region, the relative mean contribution of LULCC vs. all forcings to past monsoon rainfall changes (PD-PDv vs. PD-PI, see Methods) is ~-33%, which is about equal to the relative contribution of future LULCC (~-30%, as discussed earlier).

3.2. Remote vs. local land-atmosphere interactions

Numerous studies have suggested that remote biophysical effects of LULCC could affect regional precipitation through a shift in major features of the climate system that modulates rainfall amount [Zheng and Eltahir, 1997; Medvigy et al., 2010; Swann et al., 2012; Devaraju et al., 2015; Smith et al., 2016]. For example, LULCC can modulate the strength, timing and location of the Hadley or Ferrel cells branches which further impact monsoon regimes
[Zhang et al., 1996; Chase et al., 2000; Feddema et al., 2005; Snyder, 2010; Badger and Dirmeyer, 2015]. Here, we find little significant changes in the zonal-mean meridional mass stream function due to future LULCC (Supplementary Fig. S7). In JJA, we find a small weakening in the rising branch of the Hadley cell but no significant changes in Hadley and Ferrel cells during DJF and at annual scale in response to future LULCC. This tends to indicate a non-significant and minor impact of changes in large-scale upper atmosphere circulations on global monsoon rainfall. Besides, all 8 monsoon regions are located near the position of the ITCZ and ITCZ shifts could therefore have strong impacts on the regional precipitation regime [Medvigy et al., 2010; Devaraju et al., 2015b]. However, in our analysis, models simulate on average a slight southward ITCZ shift of 0.19° during JJA and almost no displacement during DJF and at annual scale (0.05° and 0.00° for ENS-FUT, respectively; Table S3). The ITCZ anomalies we diagnose in response to future LULCC are thus very small (i.e. an order of magnitude less than the horizontal resolution of the GCMs) and are non-significant for the ensemble-mean. In consequence, teleconnections with regard to changes in cross-equatorial heat transport or ITCZ shifts in response to future LULCC (RCP8.5 scenario) are not found to be significant contributors to decreases in monsoon rainfall.

Nonetheless, local land-atmosphere interactions have also been suggested to have strong influence on monsoon rainfall patterns [Gupta et al., 2005; Pielke et al., 2007; Takata et al., 2009; Niyogi et al., 2010; Xue et al., 2010; Halder et al., 2015]. Here, we calculated the future biophysical changes in the land energy-balance components (Figure 3a) and in land-atmosphere variables (Figure 3b). Although not significant for all variables in all monsoon regions, a general pattern in the global monsoon system appears: future LULCC lead to a decrease in evapotranspiration (L_E), an increase in sensible heat flux (H_S), an increase in incoming radiation (\downarrow SW + \downarrow LW), a decrease in total cloud fraction and in soil-moisture,
more anticyclonic conditions (ZG_{500}) and increased tropospheric subsidence anomalies (ω_{500}), in a majority of monsoon areas (Figure 3). Future LULCC cause a change in sensible and latent heat flux partitioning by about +0.4 W/m² and -0.7 W/m² on average, respectively, significantly in South Africa and East Asia. Incoming radiation at the surface is amplified by about 1.2 W/m² (of which ~¾ is due to increased solar irradiance, ↓ SW). Some changes in tropospheric circulation are found during monsoon seasons: an increase of 1.5 m in ZG_{500} and by 1.7% in subsidence anomalies (negative ω_{500} values in Figure 3). Clouds and soil-moisture are found to be reduced by 0.5% and 0.8% on average. South Africa is the region that most strongly exhibits this pattern which is in line with the strongest and most significant continental precipitation decline (Supplementary Fig. S3). Averaged over their regional domain, few significant changes in land energy-balance components and atmospheric variables are found in Australia (only region showing an increase in continental precipitation and a South-North dipole, Supplementary Fig. S3) and in Indian region (aggregation of two different land and ocean responses, Figure 2 for Indian$_{JJA}$). A special focus on the Indian monsoon is performed to detail its regional specificity. The use of other larger Indian domains used in the literature (Supplementary Fig. S8) leads to more sensitive results with larger changes in absolute rainfall (between [-1.4%; -1.8%] vs. -1% here) and a larger contribution of LULCC to Indian monsoon rainfall projections ([-11%; -14%] vs. -9% here) than the ones presented here. In addition, significant and substantial changes in land-atmosphere interactions are found in the Eastern India/Bangladesh region (Supplementary Fig. S9) but few elsewhere within the Indian domain.

Thus, a coherent negative local land-atmosphere feedback, comparable to the one proposed by [Xu et al., 2015], is found to be a significant contributor to reduction in monsoon rainfall: deforestation leads to reduce water interception, infiltration capacity and evapotranspiration flux, decreases the water vapor amount to form clouds which in turn increases incoming
radiation, favors anticyclonic conditions and subsidence anomalies that further prevent local precipitation recycling and enhance surface drying.

4. Conclusion

LULCC-biophysical impacts on rainfall in each monsoon region are now assessed as realistically as possible given current knowledge and global coupled modeling capabilities. By using multi-model simulations, based on common global and realistic LULCC scenarios, our attribution analysis reveals that biophysical effects of LULCC have a substantial drying role in monsoon regions. We quantify that they could weaken past and future changes in monsoon rainfall by about one-third on average. As only ~2/3 of global climate models account for LULCC [IPCC et al., 2013], the current average projections of monsoon rainfall could be overestimated. The underlying physical mechanisms imply a modulation of land-atmosphere interactions (less surface moisture flux, more anticyclonic conditions) and significant changes in the local surface energy balance components (less evapotranspiration, more incoming radiation). In consequence, a negative local soil-moisture/atmosphere feedback is thought to be a predominant driving mechanism rather than remote effects involving ITCZ shifts or large-scale changes in heat transport that have been put forward in recent literature. As the LULCC biophysical effects are almost immediate compared to biogeochemical effects (e.g., progressive CO2 release), taking into account LULCC accurately could improve the forecast skill of monsoon rainfall on interannual and multi-decadal timescales [Wang et al., 2015]. Note that our study does not include the simulation of the irrigation potential, land management, and urbanization. These land-use changes are also found to modulate the hydrological cycle [Pielke et al., 2011; Mahmood et al., 2014]. Moreover, our results are established using simulations of relatively coarse spatial resolution and regional modelling analysis could improve the representation of hydrological cycle in monsoon regions [e.g., Xue et al., 2016]. To increase confidence and robustness in monsoon
projections and climate mitigation strategies, we stress here the importance of considering carefully LULCC for future projections of the hydrological cycle.

Acknowledgements

This work is performed in the framework of the EC FP7 LUC4C project (http://luc4c.eu, grant n°603542). The authors thank the data producers’ from LUCID (http://www.lucidproject.org.au/) and LUCID-CMIP5 projects (https://www.mpimet.mpg.de/en/science/the-land-in-the-earth-system/working-groups/climate-biogeosphere-interaction/lucid-cmip5/): Vivek Arora, Juan-Pablo Boisier, Victor Brovkin, Patricia Cadule, Veronika Gayler, Etsushi Kato, Andy Pitman, Julia Pongratz and Eddy Robertson, for making available their model outputs and for their contribution. We also acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5), and the climate modeling groups (listed in Table S3 of this paper).

References

de Noblet-Ducoudré, N. et al. (2012), Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results

Figure 1 – ENS-FUT changes in monsoon rainfall and its relative contribution to future projections (RCP8.5 - HIST) in the 8 monsoonal regions. Results are shown in DJF for southern hemisphere regions and in JJA for northern hemisphere regions averaged over 2071-2100 period. On the left axis, grey bars indicate monsoon rainfall anomaly percentage (\(\frac{\text{RCP8.5-L2A85}}{\text{RCP8.5}}\)) due to future LULCC. On the right axis, blue bars indicate the contribution of future LULCC (RCP8.5-L2A85) relative to future projections with all forcings (RCP8.5-HIST). Both units are %. Symbols are shown for individual results of each LUCID-CMIP5 model. Note that simulated precipitations are first arithmetically averaged among the 5 LUCID-CMIP5 models before the calculation of the rainfall anomaly percentage and the relative contribution. Statistical significance is given by green tick marks and circles. One, two and three green ticks marks are displayed for those regions where at least 80% of LUCID-CMIP5 models have regional changes significant at 66\(^{th}\), 75\(^{th}\) and 80\(^{th}\) confidence level, respectively (see Methods). Green circles are added when ENS-FUT regional values are also significant at 90\(^{th}\) confidence level.
Figure 2 – Spatial patterns of ENS-FUT changes in monsoon rainfall in the 8 monsoonal regions. Black crosses are shown when at least 80% of LUCID-CMIP5 models simulate the same anomaly sign and ENS-FUT value is significant at 90th confidence level. Units for precipitation are mm/day. Arrow vectors correspond to changes in surface wind speed components (only wind speed changes greater than 0.1 m/s are displayed). Units for wind speed are m/s. Differences (RCP8.5-L2A85) are calculated for DJF in southern hemisphere regions and for JJA in northern hemisphere regions averaged over 2071-2100 period.
Figure 3 – ENS-FUT changes in (a) land energy balance components and (b) land-atmosphere variables in the 8 monsoonal regions. For panel (a), changes in sensible and latent heat flux (H, and \(L_E \)), incoming shortwave and longwave radiation at the surface (\(\downarrow SW \) and \(\downarrow LW \)) are displayed and units are W/m². For panel (b), percentage changes in total cloud fraction (Clouds), soil-moisture and vertical pressure velocity at 500 hPa (\(\omega_{500} \), negative values mean subsidence) are shown and units are %. Geopotential height at 500 hPa (\(ZG_{500} \)) is shown on the same Y-axis but with meter units. Filled (hatched) bars depict ENS-FUT changes significant (non-significant) at 90th confidence level. Differences (RCP8.5-L2A85) are calculated for DJF in southern hemisphere regions and for JJA in northern hemisphere regions on 2071-2100 period.